Extracting artifact and evoked response atoms from the MNE sample dataset#

This example illustrates how to learn rank-1 [1] atoms on the multivariate sample dataset from mne. We display a selection of atoms, featuring heartbeat and eyeblink artifacts, two atoms of evoked responses, and a non-sinusoidal oscillation.

# Authors: Thomas Moreau <thomas.moreau@inria.fr>
#          Mainak Jas <mainak.jas@telecom-paristech.fr>
#          Tom Dupre La Tour <tom.duprelatour@telecom-paristech.fr>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Romain Primet <romain.primet@inria.fr>
#
# License: BSD (3-clause)

Let us first define the parameters of our model.

# sampling frequency. The signal will be resampled to match this.
sfreq = 150.

# Define the shape of the dictionary
n_atoms = 40
n_times_atom = int(round(sfreq * 1.0))  # 1 s

# Regularization parameter which controls sparsity
reg = 0.1

# number of processors for parallel computing
n_jobs = 5

Next, we define the parameters for multivariate CSC

We use below the BatchCDL and not GreedyCDL as dicodile does not yet support greedy learning (i.e. add one atom at the time)

from alphacsc import BatchCDL  # noqa: E402

cdl = BatchCDL(
    # Shape of the dictionary
    n_atoms=n_atoms,
    n_times_atom=n_times_atom,
    # Request a rank1 dictionary with unit norm temporal and spatial maps
    rank1=True,
    uv_constraint='auto',
    # apply a temporal window reparametrization
    window=True,
    # at the end, refit the activations with fixed support and no
    # regularization to remove the amplitude bias
    unbiased_z_hat=True,
    # Initialize the dictionary with random chunk from the data
    D_init='chunk',
    # rescale the regularization parameter to be a percentage of lambda_max
    lmbd_max="scaled",
    reg=reg,
    # Number of iteration for the alternate minimization and convergence
    # threshold
    n_iter=100,
    eps=1e-4,
    # solver for the z-step
    solver_z="dicodile",
    solver_z_kwargs={'tol': 1e-3,
                     'max_iter': 100},
    # solver for the d-step
    solver_d='alternate_adaptive',
    solver_d_kwargs={'max_iter': 300},
    # sort atoms by explained variances
    sort_atoms=True,
    # Technical parameters
    verbose=1,
    random_state=0,
    n_jobs=n_jobs)

Load the sample data from mne and select the gradiometer channels. The MNE sample data contains MEG recordings of a subject with visual and auditory stimuli. We load the data using utilities from mne as a Raw object and select the gradiometers from the signal.

import os  # noqa: E402
import mne  # noqa: E402
import numpy as np  # noqa: E402

print("Loading the data...", end='', flush=True)
data_path = mne.datasets.sample.data_path()
subjects_dir = os.path.join(data_path, "subjects")
data_dir = os.path.join(data_path, 'MEG', 'sample')
file_name = os.path.join(data_dir, 'sample_audvis_raw.fif')
raw = mne.io.read_raw_fif(file_name, preload=True, verbose=False)
raw.pick_types(meg='grad', eeg=False, eog=False, stim=True)
print('done')

Then, we remove the powerline artifacts and high-pass filter to remove the drift which can impact the CSC results. The signal is also resampled to 150 Hz to reduce the computationnal burden.

print("Preprocessing the data...", end='', flush=True)
raw.notch_filter(np.arange(60, 181, 60), n_jobs=n_jobs, verbose=False)
raw.filter(2, None, n_jobs=n_jobs, verbose=False)  # high-pass above 2 Hz
raw = raw.resample(sfreq, npad='auto', n_jobs=n_jobs, verbose=False)
print('done')

Load the data as an array and reshape it to be 3d

X = raw.get_data(picks=['meg'])
info = raw.copy().pick_types(meg=True).info  # info of the loaded channels
print(info)
X_split = X[np.newaxis, :, :]
print(X_split.shape)

Fit the model and learn rank1 atoms

cdl.fit(X_split)

Then we call the transform method, which returns the sparse codes associated with X, without changing the dictionary learned during the fit.

z_hat = cdl.transform(X[np.newaxis, :, :])

Display a selection of atoms#

We recognize a heartbeat artifact, an eyeblink artifact, two atoms of evoked responses, and a non-sinusoidal oscillation.

import matplotlib.pyplot as plt  # noqa: E402

# preselected atoms of interest
plotted_atoms = [0, 1, 2, 6, 4]

n_plots = 3  # number of plots by atom
n_columns = min(6, len(plotted_atoms))
split = int(np.ceil(len(plotted_atoms) / n_columns))
figsize = (4 * n_columns, 3 * n_plots * split)
fig, axes = plt.subplots(n_plots * split, n_columns, figsize=figsize)

for ii, kk in enumerate(plotted_atoms):
    # Select the axes to display the current atom
    print("\rDisplaying {}-th atom".format(kk), end='', flush=True)
    i_row, i_col = ii // n_columns, ii % n_columns
    it_axes = iter(axes[i_row * n_plots:(i_row + 1) * n_plots, i_col])

    # Select the current atom
    u_k = cdl.u_hat_[kk]
    v_k = cdl.v_hat_[kk]

    # Plot the spatial map of the atom using mne topomap
    ax = next(it_axes)
    mne.viz.plot_topomap(u_k, info, axes=ax, show=False)
    ax.set(title="Spatial pattern %d" % (kk, ))

    # Plot the temporal pattern of the atom
    ax = next(it_axes)
    t = np.arange(n_times_atom) / sfreq
    ax.plot(t, v_k)
    ax.set_xlim(0, n_times_atom / sfreq)
    ax.set(xlabel='Time (sec)', title="Temporal pattern %d" % kk)

    # Plot the power spectral density (PSD)
    ax = next(it_axes)
    psd = np.abs(np.fft.rfft(v_k, n=256)) ** 2
    frequencies = np.linspace(0, sfreq / 2.0, len(psd))
    ax.semilogy(frequencies, psd, label='PSD', color='k')
    ax.set(xlabel='Frequencies (Hz)', title="Power spectral density %d" % kk)
    ax.grid(True)
    ax.set_xlim(0, 30)
    ax.set_ylim(1e-4, 1e2)
    ax.legend()

print("\rDisplayed {} atoms".format(len(plotted_atoms)).rjust(40))

fig.tight_layout()

Display the evoked reconstructed envelope#

The MNE sample data contains data for auditory (event_id=1 and 2) and visual stimuli (event_id=3 and 4). We extract the events now so that we can later identify the atoms related to different events. Note that the convolutional sparse coding method does not need to know the events for learning atoms.

event_id = [1, 2, 3, 4]
events = mne.find_events(raw, stim_channel='STI 014')
events = mne.pick_events(events, include=event_id)
events[:, 0] -= raw.first_samp

For each atom (columns), and for each event (rows), we compute the envelope of the reconstructed signal, align it with respect to the event onsets, and take the average. For some atoms, the activations are correlated with the events, leading to a large evoked envelope. The gray area corresponds to not statistically significant values, computing with sampling.

from alphacsc.utils.signal import fast_hilbert  # noqa: E402
from alphacsc.viz.epoch import plot_evoked_surrogates  # noqa: E402
from alphacsc.utils.convolution import construct_X_multi  # noqa: E402

# time window around the events. Note that for the sample datasets, the time
# inter-event is around 0.5s
t_lim = (-0.1, 0.5)

n_plots = len(event_id)
n_columns = min(6, len(plotted_atoms))
split = int(np.ceil(len(plotted_atoms) / n_columns))
figsize = (4 * n_columns, 3 * n_plots * split)
fig, axes = plt.subplots(n_plots * split, n_columns, figsize=figsize)

for ii, kk in enumerate(plotted_atoms):
    # Select the axes to display the current atom
    print("\rDisplaying {}-th atom envelope".format(kk), end='', flush=True)
    i_row, i_col = ii // n_columns, ii % n_columns
    it_axes = iter(axes[i_row * n_plots:(i_row + 1) * n_plots, i_col])

    # Select the current atom
    v_k = cdl.v_hat_[kk]
    v_k_1 = np.r_[[1], v_k][None]
    z_k = z_hat[:, kk:kk + 1]
    X_k = construct_X_multi(z_k, v_k_1, n_channels=1)[0, 0]

    # compute the 'envelope' of the reconstructed signal X_k
    correlation = np.abs(fast_hilbert(X_k))

    # loop over all events IDs
    for this_event_id in event_id:
        this_events = events[events[:, 2] == this_event_id]
        # plotting function
        ax = next(it_axes)
        this_info = info.copy()
        event_info = dict(event_id=this_event_id, events=events)
        this_info['temp'] = event_info
        plot_evoked_surrogates(correlation, info=this_info, t_lim=t_lim, ax=ax,
                               n_jobs=n_jobs, label='event %d' % this_event_id)
        ax.set(xlabel='Time (sec)', title="Evoked envelope %d" % kk)

print("\rDisplayed {} atoms".format(len(plotted_atoms)).rjust(40))
fig.tight_layout()

Display the equivalent dipole for a learned topomap#

Finally, let us fit a dipole to one of the atoms. To fit a dipole, we need the following:

  • BEM solution: Obtained by running the cortical reconstruction pipeline of Freesurfer and specifies the conductivity of different tissues in the head.

  • Trans: An affine transformation matrix needed to bring the data from sensor space to head space. This is usually done by coregistration of the fiducials with the MRI.

  • Noise covariance matrix: To whiten the data so that the assumption of Gaussian noise model with identity covariance matrix is satisfied.

We recommend users to consult the MNE documentation for further information.

subjects_dir = os.path.join(data_path, 'subjects')
fname_bem = os.path.join(subjects_dir, 'sample', 'bem',
                         'sample-5120-bem-sol.fif')
fname_trans = os.path.join(data_path, 'MEG', 'sample',
                           'sample_audvis_raw-trans.fif')
fname_cov = os.path.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')

Let us construct an evoked object for MNE with the spatial pattern of the atoms.

evoked = mne.EvokedArray(cdl.u_hat_.T, info)

Fit a dipole to each of the atoms.

dip = mne.fit_dipole(evoked, fname_cov, fname_bem, fname_trans,
                     n_jobs=n_jobs, verbose=False)[0]

Plot the dipole fit from the 5th atom, linked to mu-wave and display the goodness of fit.

atom_dipole_idx = 4

from mpl_toolkits.mplot3d import Axes3D  # noqa: E402, F401

fig = plt.figure(figsize=(10, 4))

# Display the dipole fit
ax = fig.add_subplot(1, 3, 1, projection='3d')
dip.plot_locations(fname_trans, 'sample', subjects_dir, idx=atom_dipole_idx,
                   ax=ax)
ax.set_title('Atom #{} (GOF {:.2f}%)'.format(atom_dipole_idx,
                                             dip.gof[atom_dipole_idx]))

# Plot the spatial map
ax = fig.add_subplot(1, 3, 2)
mne.viz.plot_topomap(cdl.u_hat_[atom_dipole_idx], info, axes=ax)

# Plot the temporal atom
ax = fig.add_subplot(1, 3, 3)
t = np.arange(n_times_atom) / sfreq
ax.plot(t, cdl.v_hat_[atom_dipole_idx])
ax.set_xlim(0, n_times_atom / sfreq)
ax.set(xlabel='Time (sec)', title="Temporal pattern {}"
       .format(atom_dipole_idx))

fig.suptitle('')
fig.tight_layout()

Gallery generated by Sphinx-Gallery