API Documentation#

Transformers#

BatchCDL(n_atoms, n_times_atom[, reg, ...])

Batch algorithm for convolutional dictionary learning

GreedyCDL(n_atoms, n_times_atom[, reg, ...])

Greedy batch algorithm for convolutional dictionary learning

OnlineCDL(n_atoms, n_times_atom[, reg, ...])

Base class for convolutional dictionary learning algorithms.

Functions#

Functions to learn atoms (d) and activations (z) from the signal

learn_d_z(X, n_atoms, n_times_atom[, ...])

Univariate Convolutional Sparse Coding.

learn_d_z_weighted(X, n_atoms, n_times_atom)

Univariate Convolutional Sparse Coding with an alpha-stable distribution

Utility functions (alphacsc.utils.signal):

check_univariate_signal(X)

Return an array that can be used with alphacsc transformers for univariate signals.

check_multivariate_signal(X)

Return an array that can be used with alphacsc transformers for multivariate signals.

split_signal(X[, n_splits, apply_window])

Split the signal in n_splits chunks for faster training.