alphacsc.learn_d_z#

alphacsc.learn_d_z(X, n_atoms, n_times_atom, func_d=<function update_d_block>, reg=0.1, lmbd_max='fixed', n_iter=60, random_state=None, n_jobs=1, solver_z='l-bfgs', solver_d_kwargs={}, solver_z_kwargs={}, ds_init=None, sample_weights=None, verbose=10, callback=None, stopping_pobj=None)#

Univariate Convolutional Sparse Coding.

Parameters
Xarray, shape (n_trials, n_times)

The data on which to perform CSC.

n_atomsint

The number of atoms to learn.

n_times_atomint

The support of the atom.

func_dcallable

The function to update the atoms.

regfloat

The regularization parameter

lmbd_max‘fixed’ | ‘scaled’ | ‘per_atom’ | ‘shared’
If not fixed, adapt the regularization rate as a ratio of lambda_max:
  • ‘scaled’: the regularization parameter is fixed as a ratio of its maximal value at init i.e. reg_used = reg * lmbd_max(uv_init)

  • ‘shared’: the regularization parameter is set at each iteration as a ratio of its maximal value for the current dictionary estimate i.e. reg_used = reg * lmbd_max(uv_hat)

  • ‘per_atom’: the regularization parameter is set per atom and at each iteration as a ratio of its maximal value for this atom i.e. reg_used[k] = reg * lmbd_max(uv_hat[k])

n_iterint

The number of coordinate-descent iterations.

random_stateint | None

The random state.

n_jobsint

The number of parallel jobs.

solver_zstr

The solver to use for the z update. Options are ‘l-bfgs’ (default) | ‘ista’ | ‘fista’

solver_d_kwargsdict

Additional keyword arguments to provide to update_d

solver_z_kwargsdict

Additional keyword arguments to pass to update_z

ds_initstr or array, shape (n_atoms, n_times_atom)

The initial atoms or an initialization scheme in {‘chunk’ | ‘random’}.

sample_weightsarray, shape (n_trials, n_times)

The weights in the alphaCSC problem. Should be None when using vanilla CSC.

verboseint

The verbosity level.

callbackfunc

A callback function called at the end of each loop of the coordinate descent.

Returns
pobjlist

The objective function value at each step of the coordinate descent.

timeslist

The cumulative time for each iteration of the coordinate descent.

d_hatarray, shape (n_atoms, n_times)

The estimated atoms.

z_hatarray, shape (n_atoms, n_trials, n_times - n_times_atom + 1)

The sparse activation matrix.

regfloat

Regularization parameter used.