Skip to main content
Ctrl+K

alphacsc 0.1.dev1 documentation

  • Model descriptions
  • Examples Gallery
  • API Documentation
  • GitHub
  • PyPI
  • Model descriptions
  • Examples Gallery
  • API Documentation
  • GitHub
  • PyPI

Section Navigation

  • Univariate CSC
    • Selecting random state for CSC
    • CSC to learn LFP spiking atoms
    • Extracting cross-frequency coupling waveforms from rodent LFP data
    • Vanilla CSC on simulated data
  • Univariate and Multivariate CSC with ‘dicodile’ solver
    • Gait (steps) example
  • Multivariate CSC with rank 1 constraints
    • Extracting \(\mu\)-wave from the somato-sensory dataset
    • Extracting artifact and evoked response atoms from the MNE sample dataset
    • Extracting artifact and evoked response atoms from the sample dataset
  • Univariate CSC with an alpha-stable distribution
    • Alpha CSC on simulated data
    • Alpha CSC on empirical time-series with strong artifacts
  • Other shift-invariant dictionary learning algorithms
    • MoTIF on simulated data
    • SWM on simulated data
  • Examples Gallery
  • Univariate and Multivariate CSC with ‘dicodile’ solver

Univariate and Multivariate CSC with ‘dicodile’ solver#

Gait (steps) example

Gait (steps) example

previous

Vanilla CSC on simulated data

next

Gait (steps) example

This Page

  • Show Source

© Copyright 2017-2018, Mainak Jas.

Created using Sphinx 7.4.7.

Built with the PyData Sphinx Theme 0.16.1.